Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae
نویسندگان
چکیده
The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae.
منابع مشابه
Comparative genomics of host-specific virulence in Pseudomonas syringae.
While much study has gone into characterizing virulence factors that play a general role in disease, less work has been directed at identifying pathogen factors that act in a host-specific manner. Understanding these factors will help reveal the variety of mechanisms used by pathogens to suppress or avoid host defenses. We identified candidate Pseudomonas syringae host-specific virulence genes ...
متن کاملComparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity
The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to m...
متن کاملKnots Untie: Molecular Determinants Involved in Knot Formation Induced by Pseudomonas savastanoi in Woody Hosts
The study of the molecular basis of tree diseases is lately receiving a renewed attention, especially with the emerging perception that pathogens require specific pathogenicity and virulence factors to successfully colonize woody hosts. Pathosystems involving woody plants are notoriously difficult to study, although the use of model bacterial strains together with genetically homogeneous microp...
متن کاملSuppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2
The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is pr...
متن کاملComparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots
Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four st...
متن کامل